Choosing a Current Transformer

DETERMINING THE TRANSFORMER RATIO IP/IS

- For the transformer primary current, choose the standard value immediately higher than the current to be measured;
- e.g. current to be measured 1124 A; take Ip = 1250 A
- For the secondary current, choose 1A or 5A depending on the instrument or relay, and on the distance between the transformer and the instrument it is feeding:

- 5 A secondary is used when instruments or relays are close to the transformer, less than 10m;

- 1 A secondary is preferred when the distance separating the current transformer and the instrument or the relay is above 10m. Losses due to the wire resistance are 25 times higher at 5 A than at 1 A.

DETERMINING THE TRANSFORMER OUTPUT

- In order to define the transformer output in VA, add the lead burden (table 2) to the burden of the instruments connected to the transformer (table 1).
- We recommend that you choose the output rating as close as possible to, but higher than, the calculated burden since the characteristics regarding accuracy and security factor might otherwise be modified.

DEFINING THE ACCURACY CLASS

Standards	Class 0.1 or 0.2
Tariff metering	Class 0.5 or 0.2
Industrial division metering	Class 1
Measurement display	Class 1 or 3
Protection	Class 5P or 10P

- Remember that instrument errors add to the errors of the transformers feeding them. This applies also when several transformers are mounted in tandem.
- In the case of class 5P or 10P choose the accuracy limit factor, generally 5, 10, 15 or 20.

DEFINING THE TYPE OF TRANSFORMER

- When the primary current is very low, a few amps or even some tens of amps, a wound primary transformer is generally used.
- Window type transformers, where the primary conductor is a cable or a bar passing through the transformer, are used when the currents to be measured are higher than 150 A. Their performance is reduced when the primary current is not particularly high (between 40 and 150 A). It is neither practical nor economic to use them below 40 A. The choice of model depends on the type of primary conductor, cable or busbar, and on its cross-section.

Choosing a Voltage Transformer

DEFINING THE ACCURACY CLASS

Standards	Class 0.1 or 0.2
Tariff metering	Class 0.5 or 0.2
Divisional industrial metering	Class 1
Measurement display	Class 1 or 3
Protection	Class 3P or 6P

DEFINING THE VOLTAGE FACTOR

- The voltage factor is determined by the maximum operating voltage, which depends on the neutral system, and the voltage transformer primary winding earthing conditions.
- When the voltage transformer is connected between two phases, the voltage factor is 1.2 Un continuously.
- When the voltage transformer is connected between phase and earth, the voltage factor depends on the neutral system:
 - 1.5 Un for 30s in an effectively earthed neutral system
 - 1.9 Un for 30 s in a non-effectively earthed neutral system with automatic earth-fault tripping
 - 1.9 Un for 8 h in an isolated neutral system, or in a resonant earthed system, without earth-fault tripping.

Important warning

- Never leave the secondary circuit of a current transformer open when voltage is applied to the transformer. High voltages may appear at the secondary circuit terminals which can be dangerous to personnel and may result in the destruction of the current transformer.
- Never short-circuit the secondary circuit of a voltage transformer when it is operating since this would destroy it in a few seconds.

Selection - Tables

TABLE 1 - INSTRUMENT BURDEN

Instrument		Burden	
Ammeters	0.5	to	4 VA
Voltmeters	2	to	5 VA
Frequency meters	1	to	5 VA
Phase angle meters	0.5	to	5 VA
Wattmeters - VARmeters	1	to	5 VA
Electromechanical counters	2	to	5 VA
Electronic counters	0.5	to	2 VA
Transducers	0.5	to	1 VA
Recorders	5	to	20 VA
Protection relays	0.2	to	30 VA

TABLE 2 - LEAD BURDEN

Burden in VA - Loop lengths in m.

ls=5A	lm	2m	3m	4m	5m	6m	7m	8m	9m	10m
1.5?	0.70	1.10	1 70	0.00	0.00	0.67	4 17	47/	5.07	r or
1.5mm ²	0.60	1.19	1.79	2.38	2.98	3.57	4.17	4.76	5.36	5.95
2.5mm ²	0.36	0.71	1.07	1.43	1.78	2.14	2.50	2.86	3.21	3.57
4mm ²	0.22	0.45	0.67	0.89	1.12	1.34	1.56	1.79	2.01	2.24
6mm ²	0.15	0.30	0.45	0.60	0.74	0.89	1.04	1.19	1.34	1.49
10mm ²	0.09	0.18	0.27	0.36	0.44	0.54	0.63	0.71	0.80	0.89
ls=1A	10m	20m	30m	40m	50m	60m	70m	80m	90m	100m
1.5mm ²	0.24	0.48	0.72	0.96	1.19	1.43	1.67	1.91	2.15	2.38
2.5mm ²	0.14	0.29	0.43	0.57	0.72	0.86	1.00	1.14	1.29	1.43
4mm ²	0.09	0.18	0.27	0.36	0.45	0.54	0.63	0.71	0.8	0.89
6mm ²	0.06	0.12	0.18	0.24	0.30	0.36	0.42	0.48	0.54	0.60
10mm ²	0.04	0.07	0.11	0.14	0.18	0.21	0.25	0.29	0.32	0.36

TABLE 3 - PERMISSIBLE CURRENT IN A BUSBAR

Ambient temperature = 30°C Maximum busbar temperature rise = 40°C Bars on edge Busbar spacing equal to the thickness of a bar Permissible current in Amps

Bar		Сор	per		Alum	inium		
Dimensions	1 bar	2 bars	3 bars	4 bars	1 bar	2 bars	3 bars	4 bars
20 x 5	320	570	730	940	190	340	430	570
30 x 5	460	820	1050	1380	360	640	820	1080
40 x 5	550	990	1260	1650	430	770	980	1290
50 x 5	650	1170	1490	1950	510	910	1170	1530
60 x 5	840	1510	1930	2520	660	1180	1510	1980
80 x 5	1000	1800	2300	3000	780	1400	1790	2340
100 x 5	1200	2160	2760	3600	940	1690	2160	2820
160 x 5	1800	3240	4140	5400	1410	2530	3240	4230

Selection - Tables

LIMITS OF ERRORS AND PHASE DISPLACEMENT FOR INSTRUMENT TRANSFORMERS

Current transformers

IEC 60044-1 standard

Accuracy			Ratio erro	r			Phase dis	placement	
class	0.05In	0.2In	0.5In	In	1.2In	0.05In	0.2In	In	1.2In
0.2	± 0.75%	± 0.35%		± 0.2%	± 0.2%	± 30'	± 15′	± 10′	± 10'
0.5	± 1.5%	± 0.75%	-	± 0.5%	± 0.5%	± 90'	± 45'	± 30'	± 30'
1	± 3%	± 1.5 %	-	±1%	±1%	± 180'	± 90'	± 60'	± 60 '
3	-	-	± 3%	-	± 3%	-	-	-	-

Accuracy		Ratio error					Phas	e displa	ement	
class	0.01In	0.05In	0.2In	In	1.2In	0.011n	0.05In	0,2In	In	1.2In
0.25	± 0.75%	± 0.35%	± 0.2%	± 0.2%	± 0.2%	± 30'	± 15′	± 10'	± 10′	± 10′
0.55	± 1.5%	± 0.75%	± 0.5%	± 0.5%	± 0.5%	± 90'	± 45'	± 30′	± 30'	± 30'

Accuracy class	Ratio error In	Phase displacement In	Composite error At rated accuracy limit current
5P	± 1%	± 60'	± 5%
10P	± 3%	-	± 10%

Voltage transformers

IEC 60044-2 standard

Accuracy class	Ratio error 0.8Un1.2Un	Phase displacement 0.8Un1.2Un
0.2	± 0.2%	± 10'
0.5	± 0.5%	± 20′
1	± 1%	± 40′
3	± 3%	-

Accuracy class	Ratio error 0.05UnVoltage factor x Un	Phase displacement 0.05UnVoltage factor x Un
3P	± 3%	± 120′
6P	± 6%	± 240′